Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 18(3): 465-475, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36826427

RESUMEN

Evidence suggests that ß-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their ß-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the synthesis of levan-type FOSs, employing levanases (EC 3.2.1.65), specifically those performing endo-hydrolysis on levans. To identify new levanases, a selection of candidates was obtained via in silico exploration of the levanase family biodiversity through a sequence-driven approach. A collection of 113 candidates was screened according to their specific activities on low- and high-molecular-weight (MW) levan as well as thermal stability. The most active levanases were able to hydrolyze both types of levan with similar efficiency. This ultimately revealed 10 active, highly evolutionary distant and diverse candidate levanases, which demonstrated preferential hydrolysis of levan over inulin. The end-product profile differed significantly depending on levanase with levanbiose, levantriose, and levantetraose being the major FOSs. Among them, the catalytic properties of 5 selected potential new levanases (LEV9 from Belliella Baltica, LEV36 from Dyadobacter fermentans, LEV37 from Capnocytophaga ochracea, LEV79 from Vibrio natriegens, LEV91 from Paenarthrobacter aurescens) were characterized, especially in terms of pH and temperature profiles, thermal stability, and kinetic parameters. The identification of these novel levanases is expected to contribute to the production of levan-type FOSs with properties surpassing those of commercial preparations.


Asunto(s)
Inulina , Oligosacáridos , Glicósido Hidrolasas/genética
2.
Front Bioeng Biotechnol ; 9: 686362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277586

RESUMEN

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.

3.
Chem Commun (Camb) ; 55(52): 7498-7501, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31187106

RESUMEN

We explored a collection of 2-deoxyribose-5-phosphate aldolases (DERAs) from biodiversity for their nucleophile substrate promiscuity. The DERAs were screened using as nucleophiles propanone, propanal, cyclobutanone, cyclopentanone, dihydroxyacetone, and glycolaldehyde with l-glyceraldehyde-3-phosphate as an electrophile in aldol addition. A DERA from Arthrobacter chlorophenolicus (DERAArthro) efficiently allowed the synthesis of the corresponding aldol adducts in good yields, displaying complementarity in terms of configuration and substrate specificity with fructose-6-phosphate aldolase, the only previously known aldolase with a large nucleophile tolerance.


Asunto(s)
Aldehído-Liasas/metabolismo , Proteínas Bacterianas/metabolismo , Aldehído-Liasas/genética , Aldehídos/química , Aldehídos/metabolismo , Arthrobacter/enzimología , Proteínas Bacterianas/genética , Biocatálisis , Biodiversidad , Escherichia coli/enzimología , Gliceraldehído 3-Fosfato/metabolismo , Especificidad por Sustrato
4.
Microb Cell Fact ; 18(1): 23, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709396

RESUMEN

BACKGROUND: Terpenes are industrially relevant natural compounds the biosynthesis of which relies on two well-established-mevalonic acid (MVA) and methyl erythritol phosphate (MEP)-pathways. Both pathways are widely distributed in all domains of life, the former is predominantly found in eukaryotes and archaea and the latter in eubacteria and chloroplasts. These two pathways supply isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the universal building blocks of terpenes. RESULTS: The potential to establish a semisynthetic third pathway to access these precursors has been investigated in the present work. We have tested the ability of a collection of 93 isopentenyl phosphate kinases (IPK) from the biodiversity to catalyse the double phosphorylation of isopentenol and dimethylallyl alcohol to give, respectively IPP and DMAPP. Five IPKs selected from a preliminary in vitro screening were evaluated in vivo in an engineered chassis E. coli strain producing carotenoids. The recombinant pathway leading to the synthesis of neurosporene and lycopene, allows a simple colorimetric assay to test the potential of IPKs for the synthesis of IPP and DMAPP starting from the corresponding alcohols. The best candidate identified was the IPK from Methanococcoides burtonii (UniProt ID: Q12TH9) which improved carotenoid and neurosporene yields ~ 18-fold and > 45-fold, respectively. In our lab scale conditions, titres of neurosporene reached up to 702.1 ± 44.7 µg/g DCW and 966.2 ± 61.6 µg/L. A scale up to 4 L in-batch cultures reached to 604.8 ± 68.3 µg/g DCW and 430.5 ± 48.6 µg/L without any optimisation shown its potential for future applications. Neurosporene was almost the only carotenoid produced under these conditions, reaching ~ 90% of total carotenoids both at lab and batch scales thus offering an easy access to this sophisticated molecule. CONCLUSION: IPK biodiversity was screened in order to identify IPKs that optimize the final carotenoid content of engineered E. coli cells expressing the lycopene biosynthesis pathway. By simply changing the IPK and without any other metabolic engineering we improved the neurosporene content by more than 45 fold offering a new biosynthetic access to this molecule of upmost importance.


Asunto(s)
Carotenoides/biosíntesis , Ingeniería Metabólica/métodos , Terpenos/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Técnicas de Cultivo Celular por Lotes , Biodiversidad , Carotenoides/análisis , Eritritol/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Ácido Mevalónico/metabolismo , Compuestos Organofosforados/metabolismo
5.
Appl Microbiol Biotechnol ; 102(13): 5569-5583, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29728726

RESUMEN

Most of the "repressor, open reading frame, kinase" (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly D-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward D-mannose and D-fructose with notable activities toward D-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward D-mannose and D-fructose of 1.5 106 s-1 M-1 and 2.7 105 s-1 M-1, respectively, but also significant ones toward D-tagatose (3.5 102 s-1 M-1) and the unnatural monosaccharides D-altrose (1.1 104 s-1 M-1) and D-talose (3.4 102 s-1 M-1). Specific activities measured for all hexoses showed a high stereopreference for D- over L-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like L-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.


Asunto(s)
Fructoquinasas/metabolismo , Streptococcus mitis/enzimología , Fosforilación , Especificidad por Sustrato , Azúcares/química , Azúcares/metabolismo , Temperatura
6.
Angew Chem Int Ed Engl ; 57(19): 5467-5471, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29542859

RESUMEN

Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.


Asunto(s)
Aldehído-Liasas/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Cetonas/metabolismo , Azúcares/metabolismo , Aldehído-Liasas/química , Bacteroides thetaiotaomicron/enzimología , Dihidroxiacetona Fosfato/química , Cetonas/química , Estructura Molecular , Estereoisomerismo , Especificidad por Sustrato , Azúcares/química
8.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28581482

RESUMEN

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Asunto(s)
Acetiltransferasas/metabolismo , Evolución Molecular , Metionina/biosíntesis , Acinetobacter/enzimología , Escherichia coli/enzimología
9.
Nat Chem Biol ; 10(1): 42-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24240508

RESUMEN

Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ß-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape.


Asunto(s)
Enzimas/metabolismo , Enzimas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...